

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1-Oxo-2,6,7-trioxa-1-phosphabicyclo-[2.2.2]octan-4-yl)methyl 4-methylbenzenesulfonate

Xu-Feng Hou^a* and Jin-Long Yan^b

^aSchool of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province, 461000, People's Republic of China, and ^bDepartment of Biology and Chemistry, Jiaozuo Teachers' College, Jiaozuo, Henan Province, 454000, People's Republic of China

Correspondence e-mail: hxfst@yahoo.com.cn

Received 13 April 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.095; data-to-parameter ratio = 17.6.

In the title compound, $C_{12}H_{15}O_7PS$, the P atom has a distorted tetrahedral environment. The P-O-C-C torsion angles deviate significantly from zero [average = 12.0 (3)°], indicating that the bicyclic OP(OCH₂)₃C cage is strained. In the crystal, weak C-H···O interactions consolidate the packing.

Related literature

For related structures, see: Miu *et al.* (1991); Sheng & He (2006); Guo & Zang (2007). For applications of caged bicyclic phosphates and *p*-toluenesulfonates, see: Li *et al.* (2000); Yachi *et al.* (1989); Spungin *et al.* (1992).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{15}O_7 \text{PS} \\ M_r = 334.27 \\ \text{Monoclinic, } P2_1/c \\ a = 5.8884 \ (17) \text{ Å} \\ b = 19.440 \ (5) \text{ Å} \\ c = 12.469 \ (4) \text{ Å} \\ \beta = 100.614 \ (4)^\circ \end{array}$

 $V = 1402.8 (7) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.38 \text{ mm}^{-1}$ T = 113 K $0.20 \times 0.18 \times 0.12 \text{ mm}$

Data collection

Rigaku Saturn CCD area-detector diffractometer Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005) $T_{\rm v} = 0.929$, $T_{\rm v} = 0.956$	17318 measured reflections 3353 independent reflections 2808 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$
$T_{\min} = 0.929, T_{\max} = 0.956$ Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 191 parameters $wR(F^2) = 0.095$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.41 \text{ e } \text{ Å}^{-3}$ 3353 reflections $\Delta \rho_{min} = -0.36 \text{ e } \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7A \cdots O5^{i}$ $C8 - H8A \cdots O1^{ii}$ $C10 - H10A \cdots O7^{iii}$ $C10 - H10B \cdots O2^{iv}$	0.98 0.99 0.99 0.99	2.59 2.38 2.27 2.44	3.288 (2) 3.180 (2) 3.211 (2) 3.348 (2)	128 138 158 152

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure*.

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5286).

References

- Guo, M.-L. & Zang, H.-J. (2007). Acta Cryst. E63, o1967-o1968.
- Li, X., Ou, Y.-X., Zhang, Y.-H. & Lian, D.-J. (2000). Chin. Chem. Lett. 11, 887– 890.
- Miu, F. M., Liu, X. L., Li, Y. G., Wang, J. J., Liu, Y. S., Bao, J. C., Cao, J. H. & Zhou, W. (1991). Acta Chim. Sin. 49, 870–875.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheng, X.-J. & He, H.-W. (2006). Acta Cryst. E62, 04398-04399.
- Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). *FEBS Lett.* **311**, 155–160.
- Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.

supplementary materials

Acta Cryst. (2012). E68, o1473 [doi:10.1107/S1600536812016674]

(1-Oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octan-4-yl)methyl 4-methylbenzenesulfonate

Xu-Feng Hou and Jin-Long Yan

Comment

Caged bicyclic phosphates are widely used as flame retardants or pesticides (Li *et al.*, 2000). They have been studied in the context of hydrogen-bond patterns (Guo & Zang, 2007). *p*-Toluenesulfonates are also used in monitoring the merging of lipids (Yachi *et al.*, 1989), studying membrane fusion during acrosome reaction (Spungin *et al.*, 1992). We report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Miu *et al.*, 1991; Sheng & He, 2006; Guo & Zang, 2007). The P—O—C—C torsion angles deviate significantly from zero [averaged -12.0 (3)°] indicating that bicyclic $OP(OCH_2)_3C$ cage is strained. In the crystal, weak C—H…O interactions (Table 1) consolidate the packing.

Experimental

The title compound was obtained in the reaction of 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide (5 mmol) and 4-toluenesulfonyl chloride(4.7 mmol) in refluxing acetonitrile (50 ml). The solvent was evaporated *in vacuo*. The title compound was recrystallized from ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear* (Rigaku/MSC, 2005); data reduction: *CrystalClear* (Rigaku/MSC, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

(1-Oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octan-4-yl)methyl 4-methylbenzenesulfonate

Crystal data
$C_{12}H_{15}O_7PS$
$M_r = 334.27$
Monoclinic, $P2_1/c$
<i>a</i> = 5.8884 (17) Å
<i>b</i> = 19.440 (5) Å
c = 12.469 (4) Å
$\beta = 100.614 \ (4)^{\circ}$
V = 1402.8 (7) Å ³
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.63 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.929, T_{\max} = 0.956$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.095$ S = 1.033353 reflections 191 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 696 $D_x = 1.583 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4690 reflections $\theta = 1.0-27.9^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 113 KPrism, colorless $0.20 \times 0.18 \times 0.12 \text{ mm}$

17318 measured reflections 3353 independent reflections 2808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -25 \rightarrow 25$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.0836P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.41$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х v Ζ 0.01842 (11) **S**1 0.99063 (6) 0.451050 (18) 0.67038 (3) P1 0.39289 (8) 0.28254(2)0.29030(3)0.02821 (13) 01 1.22894 (17) 0.45267(5)0.66257 (9) 0.0236(2)02 0.84692 (19) 0.50895 (5) 0.63399 (9) 0.0278 (3) O3 0.89302 (16) 0.38603 (5) 0.60079 (8) 0.0214(2)04 0.20805 (18) 0.29396(5)0.36462 (8) 0.0237(3)05 0.50318 (19) 0.35557 (6) 0.28262 (8) 0.0312(3)06 0.5883(2)0.23944 (6) 0.36336(10) 0.0380(3)07 0.3039(2)0.25143 (8) 0.18528 (10) 0.0495(4)C1 0.9609(2)0.43084(7)0.80401 (11) 0.0181 (3) C2 0.7696 (3) 0.45395 (8) 0.84399 (13) 0.0244(3)H2 0.029* 0.6535 0.4805 0.7994 C3 0.7513 (3) 0.43764 (8) 0.95002 (13) 0.0263 (3) H3 0.6201 0.4530 0.9776 0.032* C4 0.9193(3)0.39949 (8) 1.01712 (12) 0.0237(3)C5 1.1086(3)0.37578 (8) 0.97464 (13) 0.0261 (3) H5 0.031* 1.2237 0.3488 1.0191 0.0229 (3) C6 0.86861 (12) 1.1302(3)0.39112 (8) H6 1.2591 0.3748 0.8401 0.028* C7 0.8998(3)0.38445 (10) 1.13373 (13) 0.0340(4)H7A 0.051* 0.7525 0.4022 1.1480 0.4067 0.051* H7B 1.0276 1.1830 H7C 0.9068 0.3346 1.1460 0.051* C8 0.58979 (12) 0.6458(2)0.37224(9)0.0258(4)H8A 0.5611 0.4157 0.5953 0.031* H8B 0.6176 0.3411 0.6488 0.031* C9 0.5622(2)0.33904(7)0.47941 (11) 0.0170(3) C10 0.2981(2)0.33360 (8) 0.46400 (11) 0.0186(3)H10A 0.2546 0.3106 0.5281 0.022* H10B 0.2294 0.3802 0.022* 0.4580 0.38722 (12) 0.0224 (3) C11 0.6235(3)0.38303 (8) H11A 0.5763 0.4313 0.3957 0.027* 0.027* H11B 0.7925 0.3821 0.3898 C12 0.26691 (8) 0.47338 (13) 0.0255(3)0.6632(3)H12A 0.8340 0.2690 0.4908 0.031* 0.6096 0.031* H12B 0.2364 0.5273

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0172 (2)	0.0208 (2)	0.01733 (19)	0.00029 (14)	0.00335 (14)	0.00003 (13)
P1	0.0281 (2)	0.0345 (3)	0.0219 (2)	0.00056 (18)	0.00434 (18)	-0.01078 (18)
01	0.0179 (6)	0.0302 (6)	0.0238 (6)	-0.0038 (4)	0.0065 (4)	0.0001 (4)
O2	0.0312 (6)	0.0268 (6)	0.0249 (6)	0.0084 (5)	0.0036 (5)	0.0044 (5)
O3	0.0144 (5)	0.0287 (6)	0.0210 (5)	-0.0011 (4)	0.0032 (4)	-0.0062 (4)
O4	0.0219 (6)	0.0286 (6)	0.0199 (5)	-0.0056 (4)	0.0022 (4)	-0.0036 (4)
05	0.0316 (6)	0.0469 (8)	0.0159 (5)	-0.0085 (5)	0.0063 (5)	0.0038 (5)
O6	0.0359 (7)	0.0306 (7)	0.0440 (7)	0.0096 (5)	-0.0019 (6)	-0.0168 (6)
O7	0.0439 (8)	0.0701 (10)	0.0329 (7)	-0.0012 (7)	0.0026 (6)	-0.0301 (7)
C1	0.0176 (7)	0.0202 (7)	0.0164 (7)	-0.0015 (6)	0.0029 (6)	-0.0019 (6)
C2	0.0186 (8)	0.0310 (9)	0.0234 (8)	0.0028 (6)	0.0032 (6)	-0.0026 (6)
C3	0.0214 (8)	0.0332 (9)	0.0267 (8)	-0.0017 (6)	0.0105 (7)	-0.0058 (7)
C4	0.0277 (8)	0.0230 (8)	0.0212 (8)	-0.0085 (6)	0.0064 (6)	-0.0037 (6)
C5	0.0294 (8)	0.0260 (8)	0.0225 (8)	0.0035 (7)	0.0040 (6)	0.0037 (6)
C6	0.0207 (7)	0.0259 (8)	0.0227 (8)	0.0041 (6)	0.0053 (6)	-0.0003 (6)
C7	0.0434 (11)	0.0379 (10)	0.0231 (8)	-0.0095 (8)	0.0128 (8)	-0.0014 (7)
C8	0.0160 (7)	0.0417 (10)	0.0204 (8)	-0.0065 (6)	0.0051 (6)	-0.0080 (7)
C9	0.0167 (7)	0.0192 (7)	0.0158 (7)	-0.0011 (5)	0.0044 (5)	0.0004 (5)
C10	0.0179 (7)	0.0240 (7)	0.0143 (7)	-0.0017 (6)	0.0036 (5)	-0.0009 (6)
C11	0.0227 (8)	0.0244 (8)	0.0212 (7)	-0.0049 (6)	0.0072 (6)	0.0018 (6)
C12	0.0226 (8)	0.0227 (8)	0.0297 (8)	0.0029 (6)	0.0006 (7)	0.0013 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—O1	1.4248 (11)	C4—C7	1.508 (2)
S1—O2	1.4309 (11)	C5—C6	1.384 (2)
S1—O3	1.5803 (11)	С5—Н5	0.9500
S1—C1	1.7518 (15)	С6—Н6	0.9500
P1—O7	1.4499 (13)	С7—Н7А	0.9800
P1—O4	1.5698 (11)	С7—Н7В	0.9800
P1—O5	1.5714 (13)	С7—Н7С	0.9800
P1—O6	1.5717 (13)	C8—C9	1.5177 (19)
O3—C8	1.4617 (17)	C8—H8A	0.9900
O4—C10	1.4724 (16)	C8—H8B	0.9900
O5—C11	1.4654 (18)	C9—C11	1.528 (2)
O6—C12	1.4623 (19)	C9—C12	1.530 (2)
C1—C2	1.387 (2)	C9—C10	1.5352 (19)
C1—C6	1.394 (2)	C10—H10A	0.9900
C2—C3	1.383 (2)	C10—H10B	0.9900
C2—H2	0.9500	C11—H11A	0.9900
C3—C4	1.387 (2)	C11—H11B	0.9900
С3—Н3	0.9500	C12—H12A	0.9900
C4—C5	1.397 (2)	C12—H12B	0.9900
O1—S1—O2	119.56 (7)	С4—С7—Н7В	109.5
O1—S1—O3	104.08 (6)	H7A—C7—H7B	109.5
O2—S1—O3	108.73 (7)	C4—C7—H7C	109.5

01—S1—C1	110.02 (7)	H7A—C7—H7C	109.5
O2—S1—C1	108.73 (7)	H7B—C7—H7C	109.5
O3—S1—C1	104.64 (7)	O3—C8—C9	108.30 (11)
O7—P1—O4	114.69 (7)	O3—C8—H8A	110.0
O7—P1—O5	113.99 (8)	С9—С8—Н8А	110.0
O4—P1—O5	104.33 (6)	O3—C8—H8B	110.0
O7—P1—O6	113.91 (8)	С9—С8—Н8В	110.0
O4—P1—O6	104.27 (7)	H8A—C8—H8B	108.4
O5—P1—O6	104.49 (7)	C8—C9—C11	111.23 (12)
C8—O3—S1	116.97 (9)	C8—C9—C12	111.73 (12)
C10—O4—P1	112.92 (8)	C11—C9—C12	109.15 (12)
C11—O5—P1	114.35 (9)	C8—C9—C10	107.13 (11)
C12—O6—P1	114.27 (9)	C11—C9—C10	108.58 (12)
C2—C1—C6	120.88 (14)	C12—C9—C10	108.94 (12)
C2—C1—S1	119.94 (11)	O4—C10—C9	109.93 (11)
C6—C1—S1	119.18 (11)	O4—C10—H10A	109.7
C3—C2—C1	118.73 (14)	C9—C10—H10A	109.7
C3—C2—H2	120.6	O4—C10—H10B	109.7
С1—С2—Н2	120.6	C9—C10—H10B	109.7
C2—C3—C4	121.78 (15)	H10A—C10—H10B	108.2
C2—C3—H3	119.1	O5—C11—C9	108.85 (12)
С4—С3—Н3	119.1	O5—C11—H11A	109.9
C3—C4—C5	118.54 (14)	C9—C11—H11A	109.9
C3—C4—C7	120.85 (15)	O5—C11—H11B	109.9
C5—C4—C7	120.60 (15)	С9—С11—Н11В	109.9
C6—C5—C4	120.75 (15)	H11A—C11—H11B	108.3
С6—С5—Н5	119.6	O6—C12—C9	109.14 (12)
С4—С5—Н5	119.6	O6—C12—H12A	109.9
C5—C6—C1	119.30 (14)	C9—C12—H12A	109.9
С5—С6—Н6	120.4	O6—C12—H12B	109.9
С1—С6—Н6	120.4	C9—C12—H12B	109.9
С4—С7—Н7А	109.5	H12A—C12—H12B	108.3
O1—S1—O3—C8	-177.65 (10)	C2—C3—C4—C7	177.82 (15)
O2—S1—O3—C8	-49.18 (12)	C3—C4—C5—C6	1.2 (2)
C1—S1—O3—C8	66.86 (11)	C7—C4—C5—C6	-178.19 (15)
O7—P1—O4—C10	-172.57 (10)	C4—C5—C6—C1	0.1 (2)
O5—P1—O4—C10	-47.17 (10)	C2-C1-C6-C5	-1.2 (2)
O6—P1—O4—C10	62.18 (11)	S1—C1—C6—C5	179.22 (12)
O7—P1—O5—C11	-171.46 (10)	S1	148.31 (10)
O4—P1—O5—C11	62.71 (11)	O3—C8—C9—C11	-54.43 (17)
O6—P1—O5—C11	-46.49 (11)	O3—C8—C9—C12	67.82 (16)
O7—P1—O6—C12	-174.29 (11)	O3—C8—C9—C10	-172.94 (12)
O4—P1—O6—C12	-48.55 (12)	P1	-12.41 (14)
O5—P1—O6—C12	60.69 (12)	C8—C9—C10—O4	-172.94 (12)
O1—S1—C1—C2	152.36 (12)	C11—C9—C10—O4	66.84 (15)
O2—S1—C1—C2	19.67 (15)	C12—C9—C10—O4	-51.92 (15)
O3—S1—C1—C2	-96.37 (13)	P1	-12.39 (15)
O1—S1—C1—C6	-28.07 (14)	C8—C9—C11—O5	-169.66 (12)

supplementary materials

O2—S1—C1—C6	-160.76 (12)	C12—C9—C11—O5	66.61 (15)
O3—S1—C1—C6	83.21 (13)	C10—C9—C11—O5	-52.01 (15)
C6—C1—C2—C3	0.9 (2)	P1	-11.31 (16)
S1—C1—C2—C3	-179.56 (12)	C8—C9—C12—O6	-176.46 (12)
C1—C2—C3—C4	0.6 (2)	C11—C9—C12—O6	-53.03 (16)
C2—C3—C4—C5	-1.6 (2)	C10—C9—C12—O6	65.37 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C7—H7A····O5 ⁱ	0.98	2.59	3.288 (2)	128	
C8—H8A····O1 ⁱⁱ	0.99	2.38	3.180 (2)	138	
C10—H10A····O7 ⁱⁱⁱ	0.99	2.27	3.211 (2)	158	
C10—H10 <i>B</i> ···O2 ^{iv}	0.99	2.44	3.348 (2)	152	

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*, -*y*+1/2, *z*+1/2; (iv) -*x*+1, -*y*+1, -*z*+1.